Mum's Medicine Cabinet - Blog

15 Reasons Frankincense Essential Oil is So Amazing

Frankincense essential oil

Strong enough to take on depression and brain trauma like concussions, Frankincense essential oil is both potent and versatile. Check out these 15 truly amazing uses for this essential oil:

  1. Parkinson’s disease: Using frankincense essential oil may effectively reduce and calm some of the symptoms associated with Parkinson’s disease such as depression, insomnia, skin inflammation and digestive problems. Rub 2 drops frankincense essential oil on the temples and neck 2x daily or put 2 drops on the roof of the mouth.
  2. Multiple Sclerosis (MS): Since frankincense essential oil supports the neurological system, it can help reduce MS symptoms like lack of coordination, loss of balance, numbness and tingling. Take 2 drops of frankincense internally 3x per day for 3 weeks and then take 1 week off. Repeat the cycle.
  3. Colds: Add a drop or two frankincense essential oil to drinking water or use aromatherapy to treat colds and congestion.
  4. Vision: Research is showing that frankincense essential oil has the ability to improve eyesight and assist with reversing age-related macular degeneration (AMD). Apply 3 drops of frankincense 2x daily on the cheeks and on either sides of the eyes. Just be careful to avoid getting any oil into the eyes.
  5. Indigestion: Adding a couple drops of frankincense oil to a glass of water can treat indigestion and other digestive issues.
  6. Scars: People with acne scars and age spots can fade then using frankincense oil.
  7. Oral health: Given the antiseptic properties of frankincense oil, it can eliminate oral problems like bad breath, toothaches and cavities. Add 2 drops to a glass of water and gargle.
  8. Insomnia: Frankincense essential oil has the ability to reduce stress and calm nerves which helps you fall asleep fast and continue sleeping deeply.
  9. Cuts and wounds: Frankincense does a great job healing wounds, especially when it’s combined with lavender.
  10. Itchiness: Simply apply frankincense essential oil directly on the itchy area and enjoy instant relief.
  11. Warts and moles: Apply frankincense essential oil on the wart or mole 3x per day.
  12. Bee stings and bug bites: Reduce the irritation and pain caused by a bee sting or bug bite by applying frankincense oil directly to the affected area.
  13. Arthritis: Frankincense essential oil can reduce arthritis pain and swelling by inhibiting the production of inflammatory molecules and help prevent the breakdown of cartilage tissue. Diffuse the frankincense essential oil by your bed as you sleep or apply directly to areas of pain using a carrier oil.
  14. Gout: Applying Frankincense on affected areas can relieve pain and symptoms associated with gout. For usage, see Arthritis above.
  15. Restless leg syndrome (RLS): Get relief by applying directly to restless legs. Use a carrier oil to help spread the frankincense oil evenly over the affected area.

Take care when using Essential Oils

Use caution if taking blood pressure medication or have an existing heart condition. It’s best to use essential oils in small doses, whether taken internally or topically, as high levels might cause reactions and sensitivity. Try a skin patch check before using on a regular basis. Always consult with your doctor or naturopath before beginning any new treatment.

It is also very important to make sure that any essential oils you choose are 100 percent pure. Not all essential oils are created equal!

If you’re pregnant or breastfeeding, check with your doctor first. While most oils are safe for children, please do your due diligence with proper research and review with your physician.

Looking for the purest and safest essential oils in the world?

Well look no further! Check out Mum’s Medicine Cabinet for a selection of Young Living Essential Oils, including Therapeutic Grade™ Frankincense essential oil (Boswellia carteri).

*The Therapeutic Goods Administration has not evaluated these statements. This product is not intended to diagnose, treat, cure or prevent any disease.

Keep the Hives Alive Tour


The stop in Raleigh—which will be followed by a final stop in Washington D.C.—is part of the Keep the Hives Alive Tour, which aims to educate the public about Colony Collapse Disorder, Bayer’s neonicotinoid pesticides, and the failure of government agencies to protect bees and other pollinators.

Read more

BPA-free… But is it still safe?


You’ve probably seen ‘BPA-free’ labeling on plastic bottles. It looks like the plastic industry is catching on to the fact that consumers don’t like harmful chemicals in their plastic bottles and containers. The thing is, this shift is not necessarily all good for a number of reasons. BPA is often replaced by BPS, which is considered even more dangerous. Most importantly, BPA is not the only harmful chemical usually found in consumer plastic products.

Check out the following link for some good information on this issue:

Bicarbonate and CO2


Bicarbonate and CO2 are profoundly important for human health. Both are necessary for the successful practice of medicine and the treatment of cancer yet few understand the importance of both.

The basic reason that sodium bicarbonate (baking soda) is such a wonderful cancer treatment is that it directly increases CO2 levels in the body and this has the direct result of allowing more oxygen to reach the cancer sites, which hate O2. A $2.61 pound of sodium bicarbonate will outperform a $100,000 dollar chemo treatment because it targets the most fundamental aspects of cancer physiology, which are acidity and low oxygen conditions… Read more

The Fluoride Deception


Ever wonder where the fluoride in tap water comes from? I’ve previously read that fluoride is toxic and harmful to your health, specifically brain development and can reduce bone density. However, I was never aware of how or why it ends up in our water supply. Prevents cavaties? Right… Read this article and get ready for a shock.

Nature’s Original Superfood: Garlic


Mum always gave use raw, fresh garlic to munch on to keep us healthy during the cold & flu season. Aside from the immune boosting qualities did you know garlic is a natural anti-inflammatory, powerful detoxifier and even a cancer fighter? Check out this article to learn more about the amazing health attributes of garlic.

A Guide to Cellular Health

4 Kinds of Stress


Written by: William James Fahey, PhD
Assisted by: Peter Rothchild, M.D., PhD

Copyright © 1991. Peter R. Rothchild, MD, PhD; and William James Fahey, PhD
Published by University Labs Press, No. 1 Capitol District
250 S. Hotel Street, Suite 200, Honolulu, Hawaii 96813-2869 U.S.A.



  • Stress and Immunity
  • Antioxidant Enzymes against Free Radicals
  • Aging and Disease
  • The Main Antioxidant Enzymes
  • Superoxide Dismutase & Catalase
  • Glutathione Peroxidase
  • Methionine Reductase
  • Whole Food Supersprout Concentrates: Natural Antioxidant Enzyme Nutrition
  • References and Resources




Stress is a relatively new notion that everybody talks about, yet few understand. The dictionary defines stress as “pressure, force, strain: a state of physical or mental tension inducing it, or affecting something.” This definition, while obviously correct, is not very helpful in understanding the concept of stress. On the other hand, it is important to comprehend the notion, because all of us are continuously exposed to stress. Stress occurs in many forms. The four major categories which concern us are: 1) chemical stress; 2) emotional stress; 3) physical trauma; and 4) infections.

Each of these stress forms can originate from multiple sources. Most of these have appeared as primary threats in our environment as recently as this century. For example, chemical stress can come from pesticides, insecticides, polluted air and water, heavy metals such as mercury or lead, asbestos and, worst of all, radioactive waste. Even jet travel, a welcome commonplace today, but unheard of a mere half a century ago, exposes passengers to unhealthy high levels of ozone and random, cosmic radiations. In the light of such widespread physiological insult, it is a miracle that any of us manage to stay healthy at all.

One of the primary reasons why stress is so important to understand is, because it is intricately linked to the functioning of our immune systems. How many of us have gotten a cold when our defenses were impaired by excessive stress? This is another angle from which to view the recent rash of immune disorders unleashed in our culture. Could these problems be partly caused by an overwhelmed immune system? It should be obvious that this is quite possible, and the more we consider the high levels of stress that most of us are exposed to daily, the more relevant the idea becomes. In other words, understanding and compensating for the stress in our lives will help our immune systems and enhance our abilities to stay well.

This is not to imply that all stress is harmful. Exercise, for example, is a form of stress on the body that is quite healthy. Yet, if we overexert ourselves during exercise, we can damage the body and create problems. As we have already mentioned, many unavoidable stress factors, such as pollution and others that cause damage to the body, stem from today’s world of technological progress. In many cases the physical result brought on by several different forms of stress is the same. These unnecessary, but avoidable, results are cellular damage caused by over-reactive molecules called free radicals.

Due to their over-reactive nature, free radicals can be extremely toxic and are a direct consequence of the primary stress factors that adversely affect the immune system and threaten our health. However, this is not to imply that free radicals are always harmful or dangerous. Minute amounts of free radicals are essential for many important functions of the immune system and other vital cellular activities. For example, the immune system will actually generate free radicals to use in the process of removing a virus or bacteria. Only when high concentrations of free radicals are present, or when the levels of free radicals overwhelm the body’s ability to remove them, does a threat to our health occur. Maintaining the balance between the free radical activity and antioxidant enzyme supply is one of the important functions of the body. (Fig. 1)


Normal Balance
Fig. 1
Balance maintained. Normal levels of toxic free radicals are neutralized by cellular production of antioxidant enzymes

It is the cell where free radicals are created and do the most damage. In the case of the immune system, this random circulation of unrepaired electrons causes communication breakdown between the immune system cells and the body, thus weakening and frequently wiping out some of their signals. Simply put, excess free radicals create chemical reactions in the wrong place at the wrong time causing confusion and wreaking havoc with the cellular environment. If we consider that most components that eventually increase the free radical release in our bodies are ultimately linked to factors generated by the so-called progress of our civilization, it is easy to understand why such an increasing number of us fall prey to germs and viruses.

An immune system overwhelmed by the high toxicity of massive free radical assault will react very poorly, if at all, to threats posed by germs, viruses or to abnormal cell formations (like cancer). This is particularly true if such abnormalities are due to cell poisoning to begin with. Our ability to resist and defeat the onslaught of invaders like germs and viruses rests precisely on the reliability of a strong and capable immune system. Again, stress and the resultant free radicals are a primary cause in weakening the immune system.


As we have discussed earlier, the different forms of stress exert a common free radical insult on many of the body’s vital cellular processes. Understanding the relationship between stress, free radicals and cell damage is very important. By understanding this relationship, we can more effectively ward off the negative effects of stress. The issue becomes even more relevant when we realize that over 30 years of medical research has revealed that intensive free radical activity represents a major cell damaging factor that is implicated in every degenerative disease of our time.

Fortunately this massive amount of medical research, consisting of over 6,000 published scientific studies, has also uncovered the primary factors for free radical protection in the body. This free radical protection system is primarily made up of an array of body-produced enzymes called antioxidants. Antioxidant enzymes are the first line of defense against free radicals and must be present in sufficient amounts to avoid unnecessary cellular and tissue damage.

All enzymes are essentially catalysts, that is, they are complex molecules that stimulate chemical reactions without becoming consumed or integrated in the reactions they trigger. There are literally thousands of enzymes that occur in nature. Some of these serve to split and break down molecules. These enzymes are able to degrade tissue and compounds into simpler molecules, or in some cases, even to their constituent atoms. Life on this planet would be impossible without enzymes since organic waste and dead tissue could not be disposed of and food could not be digested. Examples of break-down enzymes are the digestive enzymes such as protease or trypsin.

A smaller, but not less important part of all existing enzymes are the types that stimulate the building up – or the synthesizing – of atoms to form molecules. The enzymes that enhance synthesis of atoms and molecules into larger and more complex molecules and tissues are also essential to life. They are linked to the creation of new tissue, and no organism could ever germinate, or grow without their support. Examples of synthesizing enzymes would be ribonuclease (RNA), and deoxyribonuclease (DNA).

Thus, our body functions are regulated by an elaborate system of enzymes responsible for the unhindered operation of most of the complex interactions between breakdown and synthesis, and whose intricate communication patterns we define as life. Without the assistance of enzymes we could never be conceived, nor could we grow or live and, paradoxically, we couldn’t even die properly.

Antioxidant enzymes in particular, have the all-important role of controlling and regulating free radical activity in the body; and, therefore, allowing for the possible prevention of unnecessary cellular and tissue damage all too common in our society. Fig. 2

Fig 2

Fig. 2
Adapted from Healing Aids Naturally, L. Badgley; M.D.

The cells utilize oxygen and nutrients to make ATP, the basic energy molecule. Free radical by-products are generated in this process, and are removed by a system of antioxidant enzymes and nutrients. The free radicals which are deactivated are then recycled by the body again. For example, hydrogen peroxide is converted into oxygen and water. If there is plenty of oxygen, fuel, water, and antioxidant enzymes, cell damage is kept at a minimum. If any of these are missing at any point in the system, cell damage, (aging) follows. The body will employ antioxidant nutrients, such as beta-carotene, vitamin E, and vitamin C, to clean up any free radicals that get by the antioxidant enzymes. The antioxidant enzymes remove free radicals 3 to 10 times faster than the antioxidant nutrients.


Despite hundreds of different medical terms that are used to describe them, many aging processes and most diseased conditions are nothing more than an accumulation of cellular damage. In these situations, more cells are being damaged than the body is able to repair or replace. The understanding of this concept and its implications is overwhelming when we realize that much of this cellular damage has its beginning or ending in a free radical induced chemical reaction. When the levels of free radicals are higher than the supply of antioxidant enzymes, we speak of free radical pathology, which represents a more accurate definition of the cause of most conditions than the current terms being used, which tend to denote the result (i.e. cancer, heart disease, etc.) (Fig. 3) Additionally, free radical damage to certain types of cells is irreversible. Three types of cells: heart muscle cells, nerve cells (which include brain cells), and certain sensor cells of the immune system cannot be replaced in the adult human. Damage to these types of cells must be prevented to ensure a long healthy life.


Fig 3

Excess free radicals from stress create imbalance and free radical pathology.

Once again, this is not to imply that excess free radical activity is the sole cause of aging and disease. Yet, it is true that a large majority of unnecessary cellular damage which leads to aging and disease can be avoided by following two simple guidelines. First, the free radical causing stress in our lives must be reduced or removed. Second, the antioxidant enzyme or anti-free radical defense system of the body must be properly supported. If even one of these premises can be implemented effectively, the process of our own individual aging and disease potential will be altered significantly.

The unfortunate truth is that many forms of free radical forming stress that originate in our so-called civilized environment and society are completely unavoidable. For example, while it is true that it is entirely up to you to give up smoking, drinking and eating junk food, you’ll find it very difficult to avoid inhaling polluted air – especially if you live in the city. Pesticide residues on food and in water are also difficult to avoid completely. Radioactive wastes and nuclear experiments, as well as increased cosmic radiation due to a weakened ozone layer, are also potentially harmful. Additionally, hundreds of other force fields generated by computers, microwaves, and power lines compound the problem. Unless you are prepared to become a hermit – in which case it would be a different set of stresses you would have to adjust to – there is nothing you can do to eliminate all of these free radical causing stress factors.

Fortunately, there are many things you can do to support the antioxidant enzyme defense system. Even before many of these stress factors were present, the ancient Essene medical practitioners proposed that ingesting certain types of wheat sprouts would be helpful to the body in its quest to maintain health and balance. Today, confirming ancient Essene experiences, modern scientific analysis has shown that certain types of wheat sprouts will actually enhance the body’s production of antioxidant enzymes. This is paramount in our search for methods of counteracting unavoidable stress. Through adding specially prepared, whole, sprouted food concentrates to our diet and supplement programs, we can ensure that excessive free radicals from any source are removed from the body by literally enhancing the body’s production of antioxidant enzymes.


Even though the production of antioxidant enzymes in the body is a complex process that is not yet totally understood, there are several processes that we are aware of and which seem to constitute a large part of the finished system.

The antioxidant enzyme defense system consists of hundreds of different substances and mechanisms. This is why only an adequate combination of whole foods, such as sprouted food concentrates, will contain all of the known and unknown nutritional factors that the body requires to enhance its antioxidant enzyme supply.


We are a species that cannot live without breathing. As a result of this circumstance, oxygen has turned into a synonym for life. A fact much less known is that not all oxygen atoms are life supporting. Some are actually quite destructive for our cells.

These unhealthy oxygen atoms are unbalanced and constitute the most common free radical known. Characterized by having an unpaired electron in its molecular structure, this oxygen free radical, called superoxide, is quite capable of causing cell damage.

The first line of defense the body has against superoxide free radicals is the enzyme known as superoxide dismutase, or SOD, which is considered the most effective antioxidant. The importance of SOD is so paramount for the protection of our cells, that it represents a substantial proportion of the proteins manufactured by the body. In brief, SOD keeps oxygen under control.

In the process of removing superoxide free radicals, SOD rarely operates alone. It requires the enzyme, catalase, to remove hydrogen peroxide molecules which are byproducts of the reactions created by SOD. Similar to SOD, catalase is abundant in the body. Integrated in all red blood cells, catalase removes hydrogen peroxide from our tissues, preventing both cell damage and, more importantly, the formation of other, more toxic, free radicals. In nature, and in the body, SOD and catalase always coexist. The natural interaction – synergy – between these two antioxidant enzymes constitutes the most effective system of free radical control in our bodies.

Superoxide free radicals initiate the breakdown of synovial fluid – the lubricating element – in the joints, causing friction and, eventually inflammation. For this reason, the attention of clinical SOD research has been focused primarily on inflammatory processes triggered by superoxide free radicals such as arthritis, bursitis and gout. Deficiency in SOD/catalase is the most notorious nutritional factor in most inflammatory processes. Recent applications of SOD/catalase enhancing foods have also proven to be extremely useful as a pre- and postoperative supplement which stimulates recovery and reduces convalescence periods remarkably.

Considering the powerful link between free radicals and many health problems, supplements that enhance SOD and catalase activity in the body offer tremendous potential in the field of preventive nutrition.


Glutathione peroxidase is another of the body’s major protectors against free radicals. This antioxidant enzyme consists of the amino acid glutathione and trace mineral selenium. These two nutrients team up to combat a specific class of free radicals called peroxides. The main biological function of selenium in mammals is a component of the glutathione peroxidase enzyme. Many of the attributes of selenium and glutathione are actually attributes of glutathione peroxidase.

Cell membranes consist primarily of lipids (fats). These lipid membranes are very susceptible to damage by free radicals, especially peroxide free radicals. This is why rancid fats (lipid peroxides) have been proven to be highly toxic. Glutathione peroxidase prevents destruction of cell membranes by removing several classes of these lipid peroxides.

The main symptoms of excess peroxide free radicals include heart disease, liver disease, premature aging, and skin diseases such as skin cancer, eczema, wrinkling, age spots, dermatitis and psoriasis. Peroxide free radicals mediate much damage to the body by impairing liver functions. Consisting of nearly 50% fatty tissue, the liver is very susceptible to lipid peroxidative damage.

Although used primarily for skin related problems, many environmentally sensitive and chemically poisoned people report that glutathione peroxidase helps them control their allergies and build resistance to the side effects of pollution. Generally speaking, all of the antioxidant enzymes are important to where pollution is a concern due to their ability to remove free radicals generated by toxic substances. The list of protective effects of glutathione peroxidase is growing and is in no way limited to any single symptom such as age spots. The effects of excess peroxidation in our cells is diverse and dangerous and must be limited to maintain cellular health.


Methionine reductase is a unique enzyme that has demonstrated an ability to remove an extremely toxic free radical called the hydroxyl radical. The hydroxyl radical is commonly formed through reactions involving heavy metals and other less toxic free radicals, such as mercury reacting with hydrogen peroxide. The hydroxyl radical has the ability to damage any type of organic cellular tissue and is considered to be the most dangerous free radical. Hydroxyl radicals are also the main toxins generated by exposure to excessive radiation. With their ability to damage any type of tissue, symptoms directly related to hydroxyl radical-induced tissue damage are difficult to identify.

One effective detoxifying application for methionine reductase is in the removal of free radical toxins generated by the mercury found in dental fillings. Another interesting application of methionine reductase is for the modern day athlete. It seems that hydroxyl radicals are also formed during exercise. This is especially true if we are exercising in oxygen starved closed rooms or in car exhaust filled polluted environments. It is amazing to see joggers running along the road during rush hour traffic. Quite possibly, they are doing more harm than good.

Most avid exercisers are aware of the need to obtain extra nutrition to fuel their activities. What many miss is the importance of cleaning out the extra metabolic wastes that are direct results of this exercise. Hydroxyl radicals can be created when we burn fat molecules to produce energy as in strenuous exercise or dieting. This is due to lack of evacuation of chemicals and toxins stored in the fatty tissue which are released when these tissues are used for fuel. These toxins, when not properly evacuated, generate the formation of hydroxyl radicals. People using methionine reductase have reported greater resistance to the ill effects of pollution as well as greater endurance, stamina, flexibility, and ability to recover from extensive exercise. Although it is generally important to exercise, our modern civilized environments force us to compensate for free radical by-products if we wish to gain health or longevity from our workout programs.


Today, many people are aware of the nutritional power of “live” foods and try to incorporate raw and/or sprouted foods into their diet. As mentioned earlier, the ancient Essene medical practitioners prescribed sprouted foods to treat and prevent many illnesses. One of the ways that science has demonstrated the relevance of sprouts as a superior source of nutrition is through the use of certain types of specially developed organically grown sprouts that actually increase the antioxidant enzyme supply of the body. More importantly, these special types of organically grown sprouts seem to carry out this very important task by literally enhancing the body’s own production of antioxidant enzymes.

Although it is not totally understood how certain sprouts are able to have this effect on antioxidant enzyme production in the body (i.e, in-vivo), certain characteristics observed during the growth stage of sprouts reveal some important clues. Grains, such as wheat, go through four primary stages of growth: 1) from seed to sprout; 2) from sprout to grass; 3) from grass to grain; and 4) from grain back to seed. At each stage of growth the needs of the plant as well as the nutritional structure and content change dramatically. For example, the sprout contains little or no chlorophyll, whereas the grass, through its contact with light, contains large amounts of chlorophyll. Another important example is in the protein gluten, the sprout and grass do not. This is why people who are allergic to wheat are able to tolerate wheat sprouts or wheat grass. The fiber content and type changes significantly during the growth cycle of the wheat plant as well. The sprout contains higher amounts of soluble fiber than the grass from predominately insoluble fiber.

Sprouts are the vegetable equivalent to the fetal stage development in humans and animals. This is probably the most important clue in understanding the sprouts ability to affect antioxidant enzyme production in mammals.

The sprouts’ cells are non-differentiated, meaning they have not totally taken the structured form yet of the complete plant. At this stage of development, just as in the fetus, the sprout is quite vulnerable to random free radical activity. It must not only contain a large supply of antioxidant enzymes, but also be able to produce more if the need arises. These antioxidant enzymes preserve vital components ensuring the proper growth and development of the plant. It has also been shown that young children or infants contain much higher levels of antioxidant enzymes, superoxide dismutase and catalase, than their adult counterparts.

As the sprout matures, breaks through the ground, and gains access to light, its antioxidant enzyme content reduces while its chlorophyll, vitamin A, and other nutrients related to photosynthesis increase. Thus, at the earliest stages of development, the sprout has a naturally built-in capacity to produce antioxidant enzymes in whatever amounts that may be necessary to preserve its development.

One of the difficulties of utilizing sprouts to enhance antioxidant enzyme levels in the body that the amounts required to have an effect are quite large – usually much more than even sprout fanatics are willing, or able, to eat in a day. Fortunately there are products available today, developed from specially developed organically grown wheat sprouts, that contain amounts of antioxidant enzyme nutrition large enough to increase antioxidant enzyme levels in the body.

Using special growing and drying techniques, these antioxidant enzyme products contain over a quart of sprouts in each tablet. The technique employed to produce the finished product guarantees that most of the original active ingredients of the living sprout are preserved in the tablet form. Grown in totally controlled environments, gently dried at room temperature, and tableted without fillers or binders, these whole sprout concentrates are the most powerful food supplement available today. Most importantly, being whole food products, they contain balanced amounts of hundreds of different nutritional factors, instead of just vitamins or minerals in isolated forms. While nutritional imbalances may be created with isolated vitamins and minerals, such imbalances are virtually impossible with unprocessed whole food products. Whole food supersprout concentrates are nature’s way of providing antioxidant enzyme nutrition to the body.

The importance of the special techniques utilized in the production of whole food supersprout concentrates is illustrated in one of the double blind studies that was performed with the products. Being a whole food product, creating a placebo that looked identical to the real product, was a difficult task. Yet, realizing that enzymes and co-enzymes are degraded when exposed to excessive heat, the placebo was then created by overheating the original product. While the original product created a dramatic increase in the antioxidant enzyme activity in the test group, the cooked product had no effect on the antioxidant enzyme activity in the placebo group. (fig. 4) How many of us eat primarily cooked foods in our diets? It is easy to see that eating primarily cooked foods, coupled with excessive free radical causing stress could contribute to create the problem of poor levels of health that afflict people in civilized cultures.

Fig 4

Fig. 4

Results of serum superoxide dismutase (SOD) and catalase (CAT) from absorption.

Study with STRESS RELEASE (SOD/CAT)tm by Fahey Pharms, Ordonez, L., Rothchild, P., Academia de Medicina, Francisco Villa 18, Las Palmas, Matamoros, Tamaulipas, Mexico, 1988. Testing procedures involved Fluorescence Fading Time and are described in detail by Rigo, A., Rotillo, G., Determination of Superoxide Dismutase and Catalase in Biological Materials by Polargraphy, Anal. Biochem., 81 (1) 157-661/ 1977 Jul/1MD

The absorption of enzymes and other complex proteins (i.e. peptides) is easily the most controversial issue when regarding supplementation designed to increase antioxidant enzyme activity in the body. It is generally believed that all complex proteins are completely broken down by the acids in the stomach and, therefore, supplementation of either enzymes or peptides is supposedly worthless at best. These ideas are based on research mostly performed over 50 years ago and – despite a large volume of recent scientific studies, including the one mentioned above, which demonstrate that some active peptides and compounds do effectively bypass stomach acids and are being absorbed into the intestines – the established scientific community has been reluctant to change its mind. Recently published articles have taken this issue to task and, “…..there is irrefutable evidence that small amounts of intact peptides and proteins do enter the circulation under normal circumstances.” (See reference 3)

While biological results of increased enzyme activity, such as the study mentioned above, do not necessarily prove absorption of enzymes or peptides in the intestines, the fact that the active or unheated product did create an increase in enzyme activity, while the heated product – used as a placebo – did not, demonstrates that some complex enzyme(s) or peptide(s) within the product was indeed responsible for the result.

Physicians and veterinarians utilizing whole food supersprout concentrates to improve the nutritional status of their patients, report a long list of positive benefits that can only be related to an improved nutritional standard.

These benefits include diminished joint pains and inflammation, more energy, better circulation, and, most importantly, significantly reduced recovery time after surgery and other types of convalescence after severe stress conditions such as physical trauma. Clearly, the degree to which a patient is well nourished does affect their ability to cope with stress. Apparently, whole food sprout concentrates supply the right nutrition for these circumstances. Due to the growing understanding of antioxidant enzymes, pharmaceutical companies are also pursuing the development of new compounds including SOD. These products, unlike whole foods, contain isolated enzymes and could potentially create imbalances. Such new products will, of course, be regulated as drugs and require prescriptions. Fortunately, we have whole food ‘supersprout’ concentrates at our disposal to naturally assist our body’s maintenance of adequate antioxidant enzymes.

Individuals utilizing whole food supersprout concentrates in their supplement programs report more energy, better mental clarity, reduced allergic reactions to environmental pollution, diminished joint pains and inflammation, more stamina for extended exercise, and, of course, significantly reduced recovery time when injured or subjected to excessive stress such as a hard workout. Many individuals even report that they effectively feel younger.

All these effects can be easily attributed to the reduction of unnecessary tissue damage caused by excess free radicals and can be afforded by all who intelligently choose whole food supersprout concentrates in their diet and supplement programs.

The all-important balance between free radical activity and antioxidant enzyme supply can be effectively maintained with whole food supersprout concentrates. (Fig. 5)


Fig 5

Fig. 5

Balance restored, whole food antioxidant enzymes neutralize excess free radicals from stress conditions.



1) Radiation Protection Manual. Lita Lee, PhD, 2061 Hampton, Redwood City, CA 94061. 415-369-2554.

2) Antioxidant Adaption: It’s Role in Free Radical Pathology. Stephen Levine, PhD, 400 Preda St., San Leandro, CA 94557.

3) Gastrointestional Absorbtion of Intact Protein., Michael L.G. Gardnre, Ann. Rev. Nutr. 8:329-50, 1988.

4) Absorbtion Study With SOD/CAT tm. Rothchild, P.R., Ordoniz, L., University Labs Press, 1215 Center St., Honolulu, HI 96828.

5) Free Radicals in Medicine, I , Chemical Nature and Biological Reactions. P.A. Southorn and G. Powis, Mayo Clin Proc, 63:381- 389, 1988.

6) Free Radicals in Medicine, II, Involvement in Human Disease. P.A. Southorn and G. Powis, Mayo Clin Proc, 63:390- 408, 1988.

7) Oxygen-Derived Free Radicals: Pathophsiology and Implications. Mark E. Hitt, DVM, Compendium Small Animal, Vol. 10, No. 8 Pg. 939-946. August, 1988.

8) Aspects of the Structure, Function, and Applications of Superoxide Dismutase. J.V. Bannister, W.H. Bannister, G. Rotilio, Critical Reviews in Biochemistry. Vol. 22, No. 2 Pg. 111-180, 1987.

9) Superoxide Dismutase and Glutathione Peroxidase Activities in Erythrocytes as Indices of Oxygen Loading Disease: A survey of One Hundred Cases. L.L. Tho and J.K. Candlish, Biochemical Medicine and Metabolic Biology, 38, 74-80, 1987.

10) Chemical Reactivity and Biological Effects of Superoxide Radicals. C.A. Chuaqui and A. Petkau, Radiat., Phys., chem. Vol. 30. No.5/6 Pg. 365-373, 1987.

11) The Essene Way of Biogenic Living. E.B. Szekely, Internation al Biogenic Society, Apartado 372. Cartago, Costa Rica, Central America. 1978.

12) Free Radical Pathology in Age-Associated Diseases: Treatment With EDTA Chelation, Nutrition, and Antioxidants. Elmer Cranton, MD, James Frackelton, MD, Journal of Holistic Medicine. Vol. 6 No. 1 Spring/Summer 1984.

All products are registered trademarks of Fahey Pharms


Article reposted with permission from Dr. William James Fahey, Ph. D., The Enzyme Company/Fahey Pharms

Nutritional Requirements and 21st Century Stresses

By William James Fahey, Ph.D.

In 1947, the United States Department of Agriculture, began testing basic grains and other foods for food value. This testing, still continuing today, has shown a measurable decrease in the essential nutritional content of foods.

Widespread use of agricultural chemicals in the form of pesticides, growth stimulants, fertilizers, and herbicides, while bringing about an enormous increase in yield per acre of crops, may have taken an equally enormous toll in degradation of health by reactions of residual chemicals in foods with our cellular environments. Additionally other environmental and lifestyle changes during this past century have brought new stresses to our lives. Environmental pollutants, radiation, jet travel, new infectious diseases, and dramatic lifestyle changes have increased our stress levels. The common denominator that links each of these stresses at the cellular level is the free radical.

Free radicals are highly toxic products of inefficient oxygen metabolism. All forms of stress; chemical, physical, emotional and infectious; adversely affect our cellular metabolism and increase free radicals. When found in normal amounts, free radicals are easily controlled by body-produced antioxidant enzymes. Not always undesirable, our bodies sometimes use free radicals to selectively destroy bacteria. However, when antioxidant enzymes are overpowered by excessive free radicals created under stress, the result is cellular dysfunction, tissue damage, and antioxidant enzyme deficiency.

We know that many illnesses have their roots in poor cellular nutrition. When nutritional deficiencies are corrected and the cellular environment improved, the body heals itself. Modern stresses have increased our need for antioxidant enzymes. At the same time, much of the food we consume is unable to fill these requirements.

One way to fill this nutritional need is with the natural matrix found in The Enzyme Company’s whole food antioxidant enzyme complexes.

Using the most advanced plant genetics and growing techniques available, The Enzyme Company produces “supersprouts” capable of supplying the nutritional tools required to effectively handle today’s environmental and lifestyle challenges.


Article reposted with permission from Dr. William James Fahey, Ph. D.,  The Enzyme Company/Fahey Pharms


Neutralize and Relieve the Toxic Effects of Chemotherapy


DR. HAROLD J. KRISTAL, San Francisco, CA
DR. GARY LAND, Redding, CA
DR. E. MIYAHARA, Honolulu, HI
DR. D. ENDERS, Downers Grove, IL
DR. D. ELI, DR. JACK BURKE, Honolulu, HI
DR. TIM BINDER, Hamilton, MT

This study was done to test whether the unwanted secondary side effects of treatment with cancer chemotherapeutics and radiation could be lessened or eliminated by building up the bodies of patients prior to and after the treatment with food form metabolic catalysts primarily antioxidant enzymes developed by Dr. William James Fahey, Ph. D. in response to the Chernobyl nuclear accident.

All doctors reported that best results were obtained when the enzymes were used proactively starting at least a week before treatment. While some physicians prescribed slightly higher dosages, the average best results of 85% were obtained by taking 25 tablets per day pre-treatment and 20 tablets per day post-treatment for two weeks then returning to 6-10 per day for several weeks after treatment.

Most of the oxidative stress from secondary free radical chain reactions was eliminated and side effects from the chemotherapeutics were insignificant. The results were similar with radiation therapy which also creates free radicals and, in addition, compromises the immune system.

After the chemotherapeutics have done their job destroying cancer cells, the issue then becomes neutralizing the secondary toxicity created by cancer chemotherapeutics which function by creating oxygen free radicals to destroy cancer cells.

Once the cancer is destroyed, the residual toxicity from the drugs results in hair loss, violent nausea, and inability to eat or even swallow. Treatment is very difficult because antioxidants such as vitamin E and C are not powerful enough to overcome the toxicity.

Studies were done on 83 patients undergoing chemotherapy and 12 patients with added radiation. Detoxification was 90% complete and secondary radical reactions were eliminated without any negative effects on the cancer treatment. The nausea, hair loss, etc. are the result of secondary free radical reactions that, wherefore, were uncontrollable and, prior to now, no new effective strategy existed that allowed the chemotherapeutics to work without serious unwanted after effects, such as nausea and hair loss.

The result of this continuing study shows that enhancing nutritional status with whole food antioxidant enzymes helps patients to better tolerate the stress and side effects of chemotherapy and radiation without interfering with the treatment and suggests that since nature forms oxygen radicals to control aberrant cell division that continued use of nutritional therapy may prevent future recurrences.

Prior to now, no effective strategy existed that allowed chemotherapeutics to work in destroying cancer cells without serious unwanted side effects.

It is well known that cancer chemotherapeutics works by forming oxygen free radicals which kill cancer cells by making them aerobic (live in an oxygen environment) where they die. The cancer cells are in an anaerobic (oxygen-free) environment. The problem of toxicity comes when secondary free radical reactions happen as a result of a deficiency of metabolic catalysts, primarily superoxide dismutase.

For twenty Years, Dr. Raymond Orloski, Ph.D., (UCLA) former Scientific Director of the Pritikan Diet Foundation, has been working in conjunction with UCLA, where he obtained his Degree in Physical Organic Chemistry, Louisiana State University, W. James Fahey, oxidant expert, and Tulane Research department. Their goal has been to bring into existence a product that would carry the world into the next millennium with health, intelligence and longevity. Antioxidants are a wonderful safeguard and preventative. Pro-oxidants are the miracle that holds together the mind, body, spirit, and immune system permanently.

Antioxidants prevent damage to health. Pro-oxidants make a healthy permanent condition. Enormous amounts of finance and research have been devoted unselfishly to provide this next step into the future. Many people feel that it is better to stay safe rather than to move into the unknown. A great conviction must be had to move ahead and regain or improve the qualities and properties of the cellular structure as we know it.

Study reposted with permission from Dr.  William James Fahey, Ph. D., The Enzyme Company/Fahey Pharms

« Older posts

Copyright © 2019 Mum's Medicine Cabinet – Blog

Theme by Anders NorenUp ↑

Skip to toolbar